Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177329

RESUMO

The aim of this work was to optimize spot welding of unidirectional tapes made of polycarbonate and carbon fibers. Three studies were performed to investigate the influences of various welding conditions on the quality of the welded spot. First, we used a full factorial experimental design to analyze the influence of temperature and time on the welds' tensile stress at break. Second, we repeated the experiment with optimized settings and conditions. Finally, we adopted a central composite design (CCD) to investigate the stability of the process. Our results show that temperature had the greatest influence on weld quality. The maximum tensile stress achieved was 23 MPa. Using a relatively high temperature for a short welding time resulted in self-cleaning of the welding head and in a faster and more stable process, and gel permeation chromatography (GPC) confirmed that these conditions caused no additional degradation.

2.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231909

RESUMO

The main aim of this work was to optimize the consolidation of unidirectional fiber-reinforced thermoplastic composite tapes made of polycarbonate and carbon fibers using a heating press and a cooling press in combination. Two comprehensive studies were carried out to investigate the impact of process settings and conditions on the quality of the consolidated parts. The initial screening study provided valuable insights that informed the design of the second study, in which the experimental design was expanded and various modifications, including the implementation of a frame tool, were introduced. The second study demonstrated that the modifications in combination with a high heating press temperature and elevated heating and cooling pressures successfully achieved the desired goals: the desired thickness (2 mm), improved bonding strength (23% increase), and reduced void content (down to 4.64%) in the consolidated parts.

3.
Polym Eng Sci ; 63(7): 2043-2058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38516562

RESUMO

There are many industrial examples of low Reynolds number non-Newtonian flows through rectangular ducts in polymer processing. They occur in all types of manufacturing processes in which raw polymeric materials are converted into products, ranging from screw extrusion to shaping operations in dies and molds. In addition, they are found in numerous rheological measurement systems. The literature provides various mathematical formulations for non-Newtonian flows through rectangular ducts, but-if not simplified further-their solution usually requires use of numerical techniques. Removing the need for these time-consuming techniques, we present novel analytical correction factors for the drag and pressure flows of power-law fluids in rectangular flow channels. We approximated numerical results for a fully developed flow under isothermal conditions using symbolic regression based on genetic programming. The correction factors can be applied to the analytical theory that describes the flow of power-law fluids between parallel plates to include effects of the side walls in the prediction of flow rate and viscous dissipation.

4.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365774

RESUMO

In the processing of thermoplastic composites, great importance is attributed to the consolidation step, as it can significantly reduce the porosity of the semi-finished product and thus influence considerably the quality of the final component. This work presents an approach to modeling the thermodynamic behavior of composite materials during hot-press consolidation. For this purpose a multi-region, multi-phase and multi-component-mixture model was developed using the simulation toolbox OpenFOAM®. The sensitivity of the model was tested by varying the thermal parameters and mesh resolution, confirming its robustness. Validity of the model was confirmed by comparing simulation results to experimental data for (i) polycarbonate with 44% carbon fiber by volume and (ii) polypropylene with 45.3% glass fiber by volume. The simulation allows very precise estimation of when a particular temperature, such as the glass transition temperature or melting point, will be reached at the core of a composite. In relation to the total process time, maximum deviation of the simulation from the experimental data amounted to 2.84%. Therefore, the model is well suited for process optimization, it offers a basis for further model implementations and the creation of a digital twin.

5.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808743

RESUMO

To enable the use of recyclates in thermoformed polypropylene products with acceptable optical appearance and good mechanical stability, a multilayer structure of virgin and recycled material can be used. When producing multilayer films with more than two layers, the used materials should have similar melt flow properties to prevent processing instabilities. In the case of a three-layer film, post-consumer recyclates are often hidden in the core layer. Due to the inconsistent melt flow properties of post-consumer recyclates, the adjustment of the melt flow properties of the core layer to those of the outer layers has to be realized by blending with virgin materials. In order to understand the effect of mixing with a virgin material with a certain pre-defined melt flow rate (MFR), material mixtures with different mixing partners from various sources were realized in this study. Hence, the pre-defined virgin material was mixed with (i) virgin materials, (ii) artificial recyclates out of a mixture of different virgin materials, and (iii) commercially available recyclates. These blends with mixing partner contents ranging from 0-100% in 10% increments were prepared by compounding and the MFR of each mixture was determined. For a mathematical description of the mixing behavior and furthermore for a proper MFR prediction of the material mix, existing mixing rules were tested on the three pre-defined sample groups. Therefore, this paper shows the applicability of different mixing rules for the prediction of the MFR of material blends. Furthermore, a new mixing rule was developed using symbolic regression based on genetic programming, which proved to be the most accurate predictive model.

6.
Polymers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746005

RESUMO

In a circular economy, polymeric materials are used in multiple loops to manufacture products. Therefore, closed-loops are also envisaged for the mechanical recycling of plastics, in which plastic is used for products that are in turn collected and reprocessed again and again to make further products. However, this reprocessing involves degradation processes within the plastics, which become apparent through changes in the property profile of the material. In the present paper, the influence of multiple recycling loops on the material properties of four different polyolefins was analyzed. Two different closed-loop cycles with industrially sized processing machines were defined, and each polyolefin was processed and reprocessed within the predefined cycles. For the investigation of the effect of the respective loops, samples were taken after each loop. The samples were characterized by high-pressure liquid chromatography coupled to a quadru-pole time-of-flight MS, high-temperature gel permeation chromatography, melt flow rate measurements, infrared spectroscopy, differential thermal analysis, and tensile tests. With increasing number of processing loops, the tested polyolefins showed continuous material degradation, which resulted in significant changes in the property profiles.

7.
Polymers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267696

RESUMO

Numerous analyses have modeled the flow of polymer melts in the melt-conveying zones of single-screw extruders. While initial studies mainly provided exact analytical results for combined drag and pressure flows of Newtonian fluids, more recently developed, numerical methods seek to deepen the understanding of more realistic flow situations that include shear-thinning and non-isothermal effects. With the advent of more powerful computers, considerable progress has been made in the modeling and simulation of polymer melt flows in single-screw extruders. This work reviews the historical developments from a methodological point of view, including (1) exact analytical, (2) numerical, and (3) approximate methods. Special attention is paid to the mathematical models used in each case, including both governing flow equations and boundary conditions. In addition, the literature on leakage flow and curved-channel systems is revisited.

8.
Polymers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207753

RESUMO

Many theoretical analyses of extrusion ignore the effect of the flight clearance when predicting the pumping capability of a screw. This might be reasonable for conventional extruder screws with "normal" clearances but leads to errors when more advanced screw designs are considered. We present new leakage-flow models that allow the effect of the flight clearance to be included in the analysis of melt-conveying zones. Rather than directly correcting the drag and pressure flows, we derived regression models to predict locally the shear-thinning flow through the flight clearance. Using a hybrid modeling approach that includes analytical, numerical, and data-based modeling techniques enabled us to construct fast and accurate regressions for calculating flow rate and dissipation rate in the leakage gap. Using the novel regression models in combination with network theory, the new approximations consider the effect of the flight clearance in the predictions of pumping capability, power consumption and temperature development without modifying the equations for the down-channel flow. Unlike other approaches, our method is not limited to any specific screw designs or processing conditions.

9.
Polymers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846905

RESUMO

Due to progress in the development of screw designs over recent decades, numerous high-performance screws have become commercially available in single-screw extrusion. While some of these advanced designs have been studied intensively, others have received comparatively less attention. We developed and validated a semi-numerical network-theory-based modeling approach to predicting flows of shear-thinning polymer melts in wave-dispersion screws. In the first part (Part A), we systematically reduced the complexity of the flow analysis by omitting the influence of the screw rotation on the conveying behavior of the wave zone. In this part (Part B), we extended the original theory by considering the drag flow imposed by the screw. Two- and three-dimensional melt-conveying models were combined to predict locally the conveying characteristics of the wave channels in a discretized flow network. Extensive experiments were performed on a laboratory single-screw extruder, using various barrel designs and wave-dispersion screws. The predictions of our semi-numerical modeling approach for the axial pressure profile along the wave-dispersion zone accurately reproduce the experimental data. Removing the need for time-consuming numerical simulations, this modeling approach enables fast analyses of the conveying behavior of wave-dispersion zones, thereby offering a useful tool for design and optimization studies and process troubleshooting.

10.
Polymers (Basel) ; 12(4)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325766

RESUMO

The progressive development of new screw concepts in single screw extrusion also makes it necessary to develop new models for the correct process description. When looking at wave-dispersion screws, the disperse melting behavior should be mentioned in particular, which has so far been less researched and modeled than the conventional melting behavior, as it occurs in standard screws. Therefore, an analytical model is presented in this paper, which considers the disperse melting under consideration of the melt and solid temperature. The basic assumption is Fourier heat conduction from the melt surrounding the particles into the particles. Furthermore, the melt temperature development by dissipation and the cooling effects were modeled analytically. Additionally, the solid bed temperature was modeled by a 2D-FDM method. By dividing the screw into several calculation sections with constant boundary conditions, it was subsequently possible to calculate the melting process over the screw length. The model developed shows comprehensible results in verification and successfully reproduces the solids content over the screw length with a mean deviation of absolute 11% in validation tests using cooling/pulling-out experiments.

11.
Polymers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547371

RESUMO

Wave-dispersion screws have been used industrially in many types of extrusion processes, injection molding, and blow molding. These high-performance screws are constructed by replacing the metering section of a conventional screw with a melt-conveying zone consisting of two or more parallel flow channels that oscillate periodically in-depth over multiple cycles. With the barrier flight between the screw channels being selectively undercut, the molten resin is strategically forced to flow across the secondary flight, assuring repeated cross-channel mixing of the polymer melt. Despite the industrial relevance, very few scientific studies have investigated the flow in wave-dispersion sections in detail. As a result, current screw designs are often based on traditional trial-and-error procedures rather than on the principles of extrusion theory. This study, which was split into two parts, was carried out to systematically address this issue. The research reported here (Part A) was designed to reduce the complexity of the problem, exclusively analyzing the pressure-induced flows of polymer melts in wave sections. Ignoring the influence of the screw rotation on the conveying characteristics of the wave section, the results could be clearly assigned to the governing type of flow mechanism, thereby providing a better understanding of the underlying physics. Experimental studies were performed on a novel extrusion die equipped with a dual wave-channel system with alternating channel depth profiles. A seminumerical modeling approach based on network theory is proposed that locally describes the downchannel and cross-channel flows along the wave channels and accurately predicts the pressure distributions in the flow domain. The solutions of our seminumerical approach were, moreover, compared to the results of three-dimensional non-Newtonian CFD simulations. The results of this study will be extended to real screw designs in Part B, which will include the influence of the screw rotation in the flow analysis.

12.
Polymers (Basel) ; 11(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30960318

RESUMO

Generally, numerical methods are required to model the non-Newtonian flow of polymer melts in single-screw extruders. Existing approximation equations for modeling the throughput⁻pressure relationship and viscous dissipation are limited in their scope of application, particularly when it comes to special screw designs. Maximum dimensionless throughputs of Π V < 2.0 , implying minimum dimensionless pressure gradients Π p , z ≥ - 0.5 for low power-law exponents are captured. We present analytical approximation models for predicting the pumping capability and viscous dissipation of metering channels for an extended range of influencing parameters ( Π p , z ≥ - 1.0 , and t / D b ≤ 2.4 ) required to model wave- and energy-transfer screws. We first rewrote the governing equations in dimensionless form, identifying three independent influencing parameters: (i) the dimensionless down-channel pressure gradient Π p , z , (ii) the power-law exponent n , and (iii) the screw-pitch ratio t / D b . We then carried out a parametric design study covering an extended range of the dimensionless influencing parameters. Based on this data set, we developed regression models for predicting the dimensionless throughput-pressure relationship and the viscous dissipation. Finally, the accuracy of all three models was proven using an independent data set for evaluation. We demonstrate that our approach provides excellent approximation. Our models allow fast, stable, and accurate prediction of both throughput-pressure behavior and viscous dissipation.

13.
Polymers (Basel) ; 10(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30960854

RESUMO

In many extrusion processes, the metering section is the rate-controlling part of the screw. In this functional zone, the polymer melt is pressurized and readied to be pumped through the die. We have recently proposed a set of heuristic models for predicting the flow behavior of power-law fluids in two- and three-dimensional metering channels. These novel theories remove the need for numerical simulations and can be implemented easily in practice. Here we present a comparative study designed to validate these new methods against experimental data. Extensive experiments were performed on a well-instrumented laboratory single-screw extruder, using various materials, screw designs, and processing conditions. A network-theory-based simulation routine was written in MATLAB to replicate the flow in the metering zones in silico. The predictions of the three-dimensional heuristic melt-conveying model for the axial pressure profile along the screw are in excellent agreement with the experimental extrusion data. To demonstrate the usefulness of the novel melt-flow theories, we additionally compared the models to a modified Newtonian pumping model known from the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...